skip to main content


Search for: All records

Creators/Authors contains: "Auro, Maureen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fluids mediate the transport of subducted slab material and play a crucial role in the generation of arc magmas. However, the source of subduction-derived fluids remains debated. The Kamchatka arc is an ideal subduction zone to identify the source of fluids because the arc magmas are comparably mafic, their source appears to be essentially free of subducted sediment-derived components, and subducted Hawaii-Emperor Seamount Chain (HESC) is thought to contribute a substantial fluid flux to the Kamchatka magmas. Here we show that Tl isotope ratios are unique tracers of HESC contribution to Kamchatka arc magma sources. In conjunction with trace element ratios and literature data, we trace the progressive dehydration and melting of subducted HESC across the Kamchatka arc. In succession, serpentine (<100 km depth), lawsonite (100–250 km depth) and phengite (>250 km depth) break down and produce fluids that contribute to arc magmatism at the Eastern Volcanic Front (EVF), Central Kamchatka Depression (CKD), and Sredinny Ridge (SR), respectively. However, given the Tl-poor nature of serpentine and lawsonite fluids, simultaneous melting of subducted HESC is required to explain the HESC-like Tl isotope signatures observed in EVF and CKD lavas. In the absence of eclogitic crust melting processes in this region of the Kamchatka arc, we propose that progressive dehydration and melting of a HESC-dominated mélange offers the most compelling interpretation of the combined isotope and trace element data.

     
    more » « less
  2. null (Ed.)
    Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models. 
    more » « less
  3. Abstract

    Thallium (Tl) isotope ratios are an emerging tool that can be used to trace crustal recycling processes in arc lavas and ocean island basalts (OIBs). Thallium is a highly volatile metal that is enriched in volcanic fumaroles, but it is unknown whether degassing of Tl from subaerial lavas has a significant effect on their residual Tl isotope compositions. Here, we present Tl isotope and concentration data from degassing experiments that are best explained by Rayleigh kinetic isotope fractionation during Tl loss. Our data closely follow predicted isotope fractionation models in which TlCl is the primary degassed species and where Tl loss is controlled by diffusion and natural convection, consistent with the slow gas advection velocity utilized during our experiments. We calculate that degassing into air should be associated with a net Tl isotope fractionation factor ofαnet = 0.99969 for diffusion and natural gas convection (low gas velocities) andαnet = 0.99955 for diffusion and forced gas convection (high gas velocities). We also show that lavas from three volcanoes in the Kamchatka arc exhibit Tl isotope and concentration patterns that plot in between the two different gas convection regimes, implying that degassing played an important role in controlling the observed Tl isotope compositions in these three volcanoes. Literature inspection of Tl isotope data for subaerial lavas reveals that the majority of these appear only minorly affected by degassing, although a few samples from both OIBs and arc volcanoes can be identified that likely experienced some Tl degassing.

     
    more » « less
  4. Abstract

    Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors.

     
    more » « less